

What causes a blazar to have optical flares without γ-ray counterparts

Xuhui Chen

Collaborators: Ritaban Chatterjee; Giovanni Fossati; Martin Pohl

Recent Results in Astrophysics 04.06.2013, Universität Potsdam

Outline

- Introduction
- Observed odd flare of PKS0208-512
- Simulation of blazar flares
- Discussion

Introduction Observation Simulations Discussion

Active Galactic Nucleus (AGN)

Blazars: Along the Jet

Jet moving relativistically

But, why does blazar vary like crazy?

BL Lacs & FSRQs

They have Spectral Energy Distribution (SED) with similar shape but different peaks. Inverse Compton (IC)?

•FSRQs and LBLs peak in UV/X-ray

•HBLs peak in Radio/infrared

Synchrotron

Observed light curves of PKS 0208-512

3 major optical flares in gray shaded sections.

The 2nd one does not have an gamma-ray counterpart.

Daily light curves of the three flares enlarged

Points with low test statistics (TS>4) included

Optical and gamma-ray light curves show clear similarity

Light curves binned in 10 day bins Upper panels show gamma-ray, Lower panels show B and J band infrared

How could the source produce correlated flares sometimes, but optical-only flares at other times?

Magnetic field growth in MHD simulation

Geometry of our cylindrical jet model

6 cases are studied

Emission mechanism	Cause of flare
Pure SSC	Burst change of magnetic field
	Burst change of acceleration efficiency
Dusty torus EC	Burst change of magnetic field
	Prolonged change of magnetic field
	Burst change of acceleration efficiency
	Prolonged change of acceleration efficiency

Electrons don't

cool much

Pure SSC scenario

Burst increase of B causes the flare

5 parameters:

$$B, n_{_{e}}, R, \gamma_{_{min}}, \delta$$

Constrained by 5 observables:

$$\mathbf{v}_{\mathrm{sy}}, \mathbf{v}_{\mathrm{ic}}, \mathbf{L}_{\mathrm{sy}}, \mathbf{L}_{\mathrm{ic}}, \mathbf{t}_{\mathrm{var}}$$

N [cm⁻³]

Electrons don't

cool much

Pure SSC scenario

Burst increase of B causes the flare

5 parameters:

$$B, n_{e}, R, \gamma_{min}, \delta$$

Constrained by 5 observables:

$$\mathbf{v}_{\mathrm{sy}}, \mathbf{v}_{\mathrm{ic}}, \mathbf{L}_{\mathrm{sy}}, \mathbf{L}_{\mathrm{ic}}, \mathbf{t}_{\mathrm{var}}$$

Pure SSC scenario

Burst increase of acceleration efficiency causes the flare

The electrons accelerated, but cooling is too slow

Introduction Observation Simulations Discussion

Dusty torus EC scenario

Brief increase of B causes the flare

6 variables but 5 observables; So we choose to fix δ =40 based on VLBI observation of superluminal motion in FSRQs

Electrons cool during the B increase

γ-ray level remains fairly constant

Dusty torus EC scenario

Prolonged increase of B causes the flare

6 variables but 5 observables; So we choose to fix δ =40 based on VLBI observation of superluminal motion in FSRQs

γ-ray level remains fairly constant

Electrons slightly cool during the B increase

Dusty torus EC scenario

Burst increase of acceleration causes the flare

VHE emission begins to show up

Dusty torus EC scenario

Prolonged increase of acceleration causes the flare

12 48 t = 60 - 70 dayst = 90 - 100 days-10t = 120 - 130 days47 $\log(\nu L_{\nu}) [{ m erg \ s^{-1}}]$ 46 -1344 12 15 18 21 24

 $log(\nu)$ [Hz]

Discussion

- 1) The lack of time delays between optical and γ -ray flares, and the occurrence of optical flares without γ -ray counterpart, support the EC model as opposed to pure SSC model; However, this depends on the association of the flares with magnetic field amplification;
- 2) Whether a blazar optical flare has an γ -ray counterpart may depend on the allocation of the shock energy between magnetization and turbulence;
- 3) This allocation may depend on the initial orientation of magnetic field in the emission blob;
- 4) The change of acceleration efficiency can explain the spectral hardening of γ -ray blazars during flares, as well as the rare detection of FSRQs in VHE.
- 5) The softening of the X-ray during acceleration induced flares may be instructive for the VHE detection of FSRQs.

MHD simulation of magnetic field amplification

The postshock magnetic field is more ordered with perpendicular magnetic field (right). How is the level of turbulence connected to the efficiency of acceleration?

Magnetic field growth in the MHD simulation

Perpendicular magnetic field case (bottom ones) has less field growth beyond compression.

VHE emission detected in 3C279

Other two FSRQs detected in VHE: 3C273 and PKS1222-216

Herschel Observation of PKS 1510-089

The high energy points are more variable than the low energy points

X-ray light curves and Hardness ratio

HESS detection of PKS1510-089

Potential Loopholes

- Escape and acceleration time scales are on the order of 10⁻⁵ light crossing time of the blob. These fast particle acceleration and escape can be explained by turbulent cells scattered across the emission region;
- Relative size: Z=2.4x10¹⁸cm, R_torus=3.5x10¹⁸cm; This can be reconciled considering the relativistic abbreviation;
- This model currently finds difficulty in explaining the increase of optical polarization during correlated flares.

Polarization change during blazar flares

These two flares also have strong γ -ray counterparts

This increase of polarization is not easily explained by turbulent magnetic field amplification

Change of polarization angle

Conclusion

Magnetic field amplification in relativistic shocks, along with its associated stochastic particle acceleration can well explain most features of blazar flares.