Institute for Physics and Astronomy, University of Potsdam
October 19, 2023
Slides available here: https://www.app.physik.uni-potsdam.de/~jbenacek/ASPS/ASPS.html
Option 1, recommended:
Use local computers
https://www.astro.physik.uni-potsdam.de/~htodt/cp/index_en.html
Option 2:
Using own computers
Interactive processing in Jupyter Lab
Programming in Python
Libraries NumPy, SciPy, and Matplotlib
CME eruption on the Sun (SDO)
Comet Hale Bopp 1997
Star formation regions in the Large Magellanic Cloud
ICF = Inertial Confinement Fusion
Kinetic description
Microscopic properties, it uses the velocity distribution function \(f(\vec{x}, \vec{v}, t)\).
Fluid description
Uses a few macroscopic quantities, averages of the distribution function (mean velocity \(v(\vec{x},t)\), pressure/temperature). Valid for exact or near thermodynamic equilibrium.
Hierarchy of plasma physics models
Range of validity of different plasma codes based on typical magnetospheric parameters: \(n=50cm^{-3}\), \(B=50 nT\), \(T_e=T_i=100 eV\) (Winske and Omidi 1996).
Validity range of different plasma codes for a weakly collisional plasma [Credits: space.aalto.fi.]
Simplified single-fluid MHD equations (w/o explicit energy eq.)
\[ \nabla\cdot\vec{B}=0 \\ \nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t} \nabla\times\vec{B}=\mu_0\vec{J} \\ \vec{E}+\vec{V}\times\vec{B}= \eta \vec{J}\\ \]
\[ \frac{\partial \rho}{\partial t} + \nabla(\rho\vec{V})=0 \\ \rho\frac{d\vec{V}}{dt} = \vec{J}\times\vec{B}-\nabla P\\ P=K\rho^{5/3} \]
Fully-kinetic equations
\[ \nabla\cdot\vec{E}=\frac{\rho}{\epsilon_0}\\ \nabla\cdot\vec{B}=0\\ \nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}\\ \nabla\times\vec{B}=\mu_0\vec{J}+\mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t}\\ \]
\[ \left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0\\ \rho=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,f_{\alpha}\\ \vec{J}=\sum\limits_{\alpha} q_{\alpha}\int dv^3\,\vec{v}f_{\alpha} \]
If Jupyter Lab does not exist, run:
pip3 install --upgrade pip
pip3 install --user jupyterlab numpy scipy matplotlib
export PATH=$HOME/.local/bin:$PATH
OR