Institute for Physics and Astronomy, University of Potsdam
November 21, 2024
Range of validity of different plasma codes based on typical magnetospheric parameters: \(n=50cm^{-3}\), \(B=50 nT\), \(T_e=T_i=100 eV\) (Winske and Omidi (1996)).
Kinetic description:
Microscopic properties, it uses the velocity distribution function \(f\).
Hierarchy of plasma physics models (Inan and Golkowsky (2011)).
Vlasov equation
\[ \frac{Df_{\alpha}(\vec{x},\vec{v},t)}{Dt}=\left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}(\vec{x},t)+\vec{v}\times\vec{B}(\vec{x},t)\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}(\vec{x},\vec{v},t)=0 \qquad(1)\]
The theorem valid only for colissionless plasmas
Liouville’s theorem: in absence of collisions, \(f\) is invariant along the trajectories in the 6D phase space.
\(\rightarrow\) Time-conservation of \(f(\vec{x},\vec{v},t) d\vec{x} d\vec{v}\) in the phase space:
Convective derivative: \[ \frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{v}\cdot \frac{\partial}{\partial\vec{x}} + \vec{a}\cdot \frac{\partial}{\partial\vec{v}} = 0 \]
Acceleration due to Lorentz force: \(\vec{a}=\left( \frac{q}{m} \right) \left(\vec{E}+\vec{v}\times\vec{B}\right)\).
Collisions and conservation of phase space (Bittencourt (2004)).
Vlasov, A. A. (1938). The vibrational properties of an electron gas. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 8, 291.
Left: Sampling via Vlasov methods. Right: Sampling via PiC methods (Pukhov (2016)).
Full equations of motion
\[ \nabla\cdot\vec{E}(\vec{x},t)=\frac{\rho(\vec{x},t)}{\epsilon_0}\\ \nabla\cdot\vec{B}(\vec{x},t)=0\\ \nabla\times\vec{E}(\vec{x},t)=-\frac{\partial \vec{B}(\vec{x},t)}{\partial t}\\ \nabla\times\vec{B}(\vec{x},t)=\mu_0\vec{J}(\vec{x},t)+\mu_0\epsilon_0\frac{\partial \vec{E}(\vec{x},t)}{\partial t} \]
\[ \frac{dv_i}{dt}=\frac{q}{m}\left[\vec{E}(\vec{x}_i,t) + \vec{v}\times\vec{B}(\vec{x}_i,t) \right] \]
\[ \rho(\vec{x},t)=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,\sum_i\delta(\vec{x}-\vec{x_i})\delta(\vec{v}-\vec{v_i})\\ \vec{J}(\vec{x},t)=\sum\limits_{\alpha} q_{\alpha}\int dv^3\,\vec{v}\sum_i\delta(\vec{x}-\vec{x_i})\delta(\vec{v}-\vec{v_i}) \]
Range of validity of different plasma codes based on typical magnetospheric parameters: \(n=50cm^{-3}\), \(B=50 nT\), \(T_e=T_i=100 eV\) (Winske and Omidi (1996)).
Validity range of different plasma codes [Credits: space.aalto.fi.]
\(Kn\) is the Knudsen number, which indicates how collisional a plasma is. A collisionless plasma has \(K_n\gg1\).
Particle-in-Cell (PiC) codes
cell
).Left: Sampling via Vlasov methods (Eulerian). Right: Sampling via PiC methods (Lagrangian)~(Pukhov 2016).
Macroparticle and its charge density
Dawson (1983).
With \(\xi= \frac{ |x-x_i|}{\Delta x}\)
Higher order shape functions reduce numerical noise/collisions/heating.
Left: \(S(x)\). Right \(W(x)\). Both in 1D.
\(W(x)W(y)\) functions in 2D.
PIC loop.
Electrostatic (ES) plasma model
\[ \nabla^2\phi=-\frac{\rho}{\epsilon_0}\\ \nabla\cdot\vec{B}=0 \]
\[ \left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}+\vec{v}\times\vec{B}_0\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0\\ \rho=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,f_{\alpha} \]
Note that Poisson’s equation is an elliptic equation with no real characteristics \(\Rightarrow\) the nature of the equations is different from the hyperbolic fully-kinetic plasma model.
First order particle weighting (C. K. Birdsall and Langdon (1991)).
symmetric
\(E_i=\sum_k g_{ik}\rho_k\) with \(g_{ik}=-g_{ki}\), the two-particle interaction force becomes \[
F_{12}= e_1E_2(x_1)=e_1\sum_i E_{2,i}S(x_i-x_1)=-e_2E_1(x_2)=-F_{21}
\]Leapfrog scheme (Charles K. Birdsall (1999)).
For particles in harmonic motion. \[ \frac{d^2x}{dt^2}= -\omega_0^2 x \]
The finite difference becomes \[ \sin\left(\frac{\omega \Delta t}{2}\right)= \pm\frac{\omega_0 \Delta t}{2} \]
Leapfrog is stable if \(\omega_{0}\Delta t \leq 2\).
The relevant frequency is \(\omega_0=\omega_{pe}\), but accuracy for plasma waves requires \(\omega_{pe}\Delta t< 0.2\).
Leapfrog scheme: Real frequency \(\omega_r\) and numerical growth rate \(\omega_i\). Phase error is the difference with the exact frequency \(\omega_0\) (Verboncoeur (2005)).
Geometry for the Boris algorithm (C. K. Birdsall and Langdon (1991)).
Red: \(\vec{E}\) (RHS Equation 7). Blue: Resulting \(B_x\)
Yee lattice
FDTD numerical dispersions relation for light waves: physical, propagation along a grid axis, 2D grid diagonal and 3D grid diagonal.\(\Delta t=\nu \Delta_{t,max}= \nu \Delta x \sqrt{3}/c\).
Specifically used to advance particles in plasma simulations (it is the de facto algorithm).
It has very good conservation properties: it , even though it is not symplectic (Qin et al. (2013)).
Discretized (relativistic Lorentz force):
\[ \frac{\vec{x}^{i+1/2} - \vec{x}^{i-1/2}}{\Delta t} = \frac{\vec{v}^{i}}{\gamma^{i}} \\ \frac{\vec{u}^{i+1} - \vec{u}^{i}}{\Delta t} = \frac{q}{m}\left(\vec{E}^{i+1/2} +\vec{v}^{i+1/2} \times\vec{B}^{i+1/2} \right) \] where \(\vec{u}=\gamma (c,\vec{v})\) the 4-velocity, \(\gamma=\left(1-\left(\frac{v}{c}\right)^2\right)^{-\frac{1}{2}}=\left(1+\left(\frac{u}{c}\right)^2\right)^{-\frac{1}{2}}\) the Lorentz factor.
The idea of the Boris algorithm is to separate the electric and magnetic force in 3 parts: first half of the electric force is determined, then the full magnetic force (rotation), and finally the second half of the electric force.
The Boris push.
Comparison of energies of a charged particle moving in a given B-field, with its trajectory calculated using the RK4 and Boris algorithms .