Institute for Physics and Astronomy, University of Potsdam
January 30, 2025
Range of validity of different plasma codes based on typical magnetospheric parameters: \(n=50cm^{-3}\), \(B=50 nT\), \(T_e=T_i=100 eV\) (Winske and Omidi (1996)).
Validity range of different plasma codes [Credits: space.aalto.fi].
Hybrid-kinetic description in the Darwin limit and for \(m_e=0\)
\[ \nabla\cdot\vec{B}=0\\ \nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}\\ \nabla\times\vec{B}=\mu_0\vec{J}\\ \left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0 \\ \]
\[ \rho=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,f_{\alpha}\\ \vec{J}=\sum\limits_{\alpha} q_{\alpha}\int dv^3\,\vec{v}f_{\alpha} - en_e\vec{V}_e\\ 0=-en_e(\vec{E}+\vec{V}_e\times\vec{B})-\nabla P_e + en_e\eta\vec{J}\\ en_e=\sum_{\alpha}q_{\alpha}n_{\alpha}\\ P_e=T_{e0}n_e^{\gamma} \]
where \(\alpha\) are ions species.
Note that the electron equation of motion is a generalized Ohm’s law, which can be written in several forms: \[ 0 =-en_e(\vec{E}+\vec{V}_e\times\vec{B})-\nabla P_e + en_e\eta\vec{J}\\ \vec{E} = -\vec{V}_e\times\vec{B} - \frac{\nabla P_e}{en_e} + \eta\vec{J}\\ \vec{E} = -\vec{V}_i\times\vec{B} + \frac{\vec{J}\times\vec{B}}{en_e} - \frac{\nabla P_e}{en_e} + \eta\vec{J}\\ \vec{E} = -\vec{V}_i\times\vec{B} + \frac{(\nabla\times\vec{B}/\mu_0)\times\vec{B}}{en_e} - \frac{\nabla P_e}{en_e} + \eta\vec{J} \]
\(q_p\) and \(m_p\) correspond to the charge and mass of each macroparticle (not the physical particle). The sum runs over all the cell vertices (\(\vec{x}_c\)) at the boundaries of each cell volume.
How to numerically determine a wave dispersion relation using the output of a PIC code?
Transverse modes
Electrostatic perpendicular modes .
Energies .
\(t=20\Omega_{ci}^{-1}\) .
\(t=40\Omega_{ci}^{-1}\) .
\(t=60\Omega_{ci}^{-1}\) .
Numerical dispersion relation .
Gyrokinetics transformation
Schematics of gyrokinetics
Schematics of gyrokinetics
Strongly magnetized conditions:
Larmor radius: \[ \rho_i=\frac{v_{th,i}}{\Omega_{ci}}\ll l_0 \] where \(l_0\) is a typical gradient length scale; below denoted as the typical parallel wavelength of the fluctuations.
This defines the ordering/expansion parameter \(\epsilon\) \[ \epsilon=\frac{\rho_i}{l_0}\ll 1 \]
Let \(F_0\), \(B_0\) and \(E_0=v_{th, i}B_0\) be the equilibrium distribution function and \(\delta f_1\), \(\delta \vec{B}\), and \(\delta \vec{E}\) are their perturbations.
Then, we have, \[ \frac{\delta f_1}{F_0} \sim \frac{\delta \vec{B}}{B_0} \sim \frac{\delta \vec{E}}{v_{th, i}B_0}\sim\mathcal{O}(\epsilon ) \qquad(3)\]
The equilibrium distribution function is allowed to vary slow enough: \[ \frac{1}{F_0}\frac{\partial F_0}{\partial t}\sim \mathcal{O}\left(\frac{1}{t_{\rm heat}}\right). \] where \(t_{\rm heat}\) is the so called heating time-scale: \[ t_{\rm heat} = \frac{1}{\epsilon^2}\frac{l_0}{v_{th, i}}\sim\mathcal{O}\left(\frac{1}{\epsilon^3\Omega_{ci}}\right) \]
Small/large spatial fluctuations across/along the magnetic field. \[ k_{\perp} \sim \frac{\hat{b}\times\nabla \delta f}{\delta f} \sim \frac{\hat{b}\times\nabla \delta \vec{B}}{|\delta \vec{B}|} \sim \frac{\hat{b}\times\nabla \delta \vec{E}}{|\delta \vec{E}|}\sim \mathcal{O}\left(\frac{1}{\rho_i}\right)\qquad \Leftrightarrow\qquad k_{\perp}\rho_i\sim 1\\ k_{\parallel} \sim \frac{\hat{b}\cdot\nabla \delta f_1}{\delta f} \sim \frac{\hat{b}\cdot\nabla \delta \vec{B}}{|\delta \vec{B}|} \sim \frac{\hat{b}\cdot\nabla \delta \vec{E}}{|\delta \vec{E}|}\sim \mathcal{O}\left(\frac{1}{l_0}\right) \]
where \(\hat{b}=\vec{B}_0/B_0\)
Then, the anisotropy of the fluctuations is \[ \frac{k_{\parallel}}{k_{\perp}} = \frac{\rho_i}{l_0}\sim\mathcal{O}\left(\frac{\rho_i}{l_0}\right)\sim\mathcal{O}(\epsilon) \ll 1, \qquad(4)\]
which agrees with a key prediction of MHD turbulence as well as solar wind observations.
Since the dominant drift tends to be \(\vec{E}\times\vec{B}\), we have: \[ \vec{V}_{\perp} \sim \frac{\delta\vec{E}\times \vec{B}_0}{B_0^2} \sim \mathcal{O}(\epsilon v_{th, i}) \qquad(5)\]
Thus, the maximum spatial fluctuations perpendicular to the magnetic field are of order \[ L_{\perp} \sim \frac{|\vec{V}_{\perp}|}{\omega} \sim \frac{1}{k_{\perp}} \sim \mathcal{O}(\rho_i) \]
\(\Omega_{ci}^{-1}\) (fast, upper limit), \(\omega^{-1}\) (typical GK wave frequencies), \(t_{heat}\) (slow, lower limit)
Range of validity of GK (Gregory G. Howes et al. (2006)).
(Gregory G. Howes et al. (2006))
The Big Bang Theory and gyrokinetics.
\[ \frac{\partial h_s}{\partial t} + v_{\parallel}\hat{b}\cdot\frac{\partial h_s}{\partial \vec{R}_s} + \frac{c}{B_0}\left[ \langle \chi\rangle_{\vec{R}_s}, h_s\right] -\left(\frac{\partial h_s}{\partial t}\right)_{coll} = q_s\frac{\partial \langle \chi\rangle_{\vec{R}_s}}{\partial t}\frac{F_{0s}}{T_{0s}} \] can be compared with Vlasov–Boltzman equation without gyrokinetic approximation. \[ \frac{\partial f_{\alpha}}{\partial t} + \vec{v}\cdot\frac{\partial f_{\alpha}}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}(\vec{x},t)+\vec{v}\times\vec{B}(\vec{x},t)\right)\cdot\frac{\partial f_{\alpha}}{\partial \vec{v}}= \left( \frac{\partial f_\alpha}{\partial t} \right)_{coll} \qquad(7)\]
Gregory G. Howes et al. (2006)
First numerical approach for gyrokinetics in the 80s
Based on the Liouville’s theorem for the ring (gyrocenter) distribution, sampled by macroparticles.
It is numerically cheap and very suitable for HPC computing.
But the method is noisy due to its statistical nature.
This is the reason why most of the PIC-GK codes advance only the fluctuating distribution function (\(\delta f\) method), so that the noise is reduced.
Range of validity of GK Gregory G. Howes et al. (2006).
Range of validity of GK Gregory G. Howes et al. (2006).
Thesis by David Thomos, 2018