Institute for Physics and Astronomy, University of Potsdam
February 6, 2025
Liouville’s theorem: in absence of collisions, \(f\) is invariant along the trajectories in the 6D phase space.
\(\rightarrow\) Conservation of \(f(\vec{x},\vec{v},t)\) in phase space: \(Df/Dt=0\)
\(Df/Dt=0\) is called Vlasov equation considering:
\[ \frac{Df}{Dt}=\left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0 \]
Conservation of the distribution function \(f\) (Bittencourt (2004)).
Fully-kinetic equations (electromagnetic case)
\[ \nabla\cdot\vec{E}=\frac{\rho}{\epsilon_0}\\ \nabla\cdot\vec{B}=0\\ \nabla\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}\\ \nabla\times\vec{B}=\mu_0\vec{J}+\mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t} \]
\[ \left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}+\vec{v}\times\vec{B}\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0\\ \rho=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,f_{\alpha}\\ \vec{J}=\sum\limits_{\alpha} q_{\alpha}\int dv^3\,\vec{v}f_{\alpha} \]
Electrostatic (ES) plasma model
\[ \nabla^2\phi=-\frac{\rho}{\epsilon_0}\\ \left[\frac{\partial}{\partial t} + \vec{v}\cdot\frac{\partial}{\partial \vec{x}}+\frac{q_{\alpha}}{m_{\alpha}}\left(\vec{E}\right)\cdot\frac{\partial}{\partial \vec{v}}\right]f_{\alpha}=0\\ \rho=\sum\limits_{\alpha} q_{\alpha}\int\limits dv^3\,f_{\alpha} \]
Phase space representation with PIC and Vlasov methods (Pukhov (2016)).
(Arber and Vann (2002)).
Setup of the two-stream instability (Birdsall and Langdon (1991)).
Vlasov methods in space physics and astrophysics, Palmroth et al. (2018)
Ganse et al. (2023)
(Cheng and Knorr (1976)).
(Cheng and Knorr (1976))
(Klimas (1987)).
Comparison of dispersion, diffraction, and refraction in solids.
Green pluses: real solutions, color scale: wave growth rates. (Benáček & Karlický 2019).
Let the dependent variables: \[ \{f(\vec{x},t), g(\vec{x},t), h(\vec{x},t),...\} \]
If any perturbation is applied to one of those variables, then solving the system of PDEs will provide the response of all the other dependent variables.
For example, let us assume a perturbation: \[ f=f_0 + \epsilon f_1 + O(\epsilon^2 f_2) \] where \(\epsilon\ll1\) and \(\epsilon|f_1|\ll |f_0|\).
This implies, for example, \[ g=g(f)=g(f_0 + \epsilon f_1)\\ g=g_0 + \epsilon g_1 +\epsilon^2 g_2+... \] so that the variables can be written as (considering \(\epsilon\)’s as implicit): \[ f= f_0 + f_1\\ g= g_0 + g_1 + O(g_2) \\ h= h_0 + h_1 + O(h_2) \]
Green pluses: real solutions, color scale: wave growth rates. (Benáček & Karlický 2019).
Electron plasma waves. Top panel: real frequency. Bottom panel: damping rate (Gary (1993)).
Ion acoustic waves (Gary (1993)).
Taking the derivative of Ampére’s law, and eliminating \(\vec{B}\) via Faraday’s law, we get the general wave equation: \[ \nabla^2\vec{E} - \nabla(\nabla\cdot\vec{E}) - \mu_0\epsilon_0\frac{\partial^2\vec{E}}{\partial t^2}= \mu\frac{\partial \vec{J}}{\partial t} \]
We assume a linear relation between the current density and electric field (valid for small perturbations), corresponding to a time-varying : \[ \vec{J}=\int d^3x'\int_{-\infty}^t dt' \bar{\sigma}(\vec{x}, \vec{x}', t, t' )\cdot\vec{E} \]
The integration in time from \(-\infty\) to \(t\) contains the concept of causality (history of the plasma contributes to its response at time \(t\)), while the future behaviour is determined by the solution of Maxwell’s eqs.
The conductivity tensor \(\sigma\) describes all properties of the plasma, closing the Maxwell system of eqs. It depends, therefore, on the choice of plasma model.
\[ \nabla^2\vec{E}_1 - \nabla(\nabla\cdot\vec{E}_1) - \mu_0\epsilon_0\frac{\partial^2\vec{E}_1}{\partial t^2}= \mu\frac{\partial \vec{J}_1}{\partial t}\\ \vec{J}_1=\int d^3x'\int_{-\infty}^t dt' \bar{\sigma}(\vec{x}-\vec{x}', t- t' )\cdot\vec{E}_1 \qquad(9)\]
(Baumjohann and Treumann (1997))